
​Official Documentation​
​6-Axis Robotic Arm​

​10/10/2025​



​Table of Contents​
​Table​​of​​Contents​​...........................................................................................................................​​2​
​Overview​​.........................................................................................................................................​​3​
​Mechanical​​......................................................................................................................................​​4​

​Motors​​........................................................................................................................................​​4​
​Torque​​Transmission​​..................................................................................................................​​5​
​Base​​Design​​...............................................................................................................................​​6​
​Encoder​​Mounts​​.........................................................................................................................​​9​
​Wiring​​......................................................................................................................................​​10​
​End-effectors​​............................................................................................................................​​11​

​Electrical​​.......................................................................................................................................​​11​
​Power​​System​​...........................................................................................................................​​12​
​Motor​​Drivers​​...........................................................................................................................​​13​
​Encoders​​...................................................................................................................................​​13​
​Motor​​Controls​​.........................................................................................................................​​15​

​Programming​​................................................................................................................................​​17​
​Motion​​Planning​​......................................................................................................................​​17​
​Inverse​​Kinematics​​...................................................................................................................​​18​
​Instruction​​Sets​​.........................................................................................................................​​19​



​Overview​
​The​ ​goal​ ​of​ ​this​ ​project​ ​was​ ​to​ ​design​ ​and​ ​fabricate​ ​a​ ​6-axis​ ​robotic​ ​arm​ ​spanning​ ​2​ ​feet,​

​completely​​from​​scratch,​​with​​a​​budget​​of​​$300​​from​​the​​University​​of​​Illinois​​for​​presentation​​at​

​the​ ​2025​ ​Engineering​ ​Open​ ​House​ ​(EOH).​ ​This​ ​project​ ​was​ ​associated​ ​with​ ​the​ ​University​ ​of​

​Illinois’s​ ​chapter​ ​of​ ​the​ ​American​ ​Society​ ​of​ ​Mechanical​ ​Engineers​ ​(ASME)​ ​as​ ​part​ ​of​ ​their​

​Special​​Projects​​team.​​It​​was​​split​​into​​three​​subteams:​​mechanical,​​electrical,​​and​​programming.​

​Mechanical​​focused​​on​​the​​motors,​​torque​​transmission,​​and​​all​​CAD.​​Electrical​​focused​​on​​high​

​and​ ​low​ ​voltage​ ​circuitry,​ ​power,​ ​and​ ​connections​ ​and​ ​wiring​ ​to​ ​motors,​ ​encoders,​ ​and​

​end-effectors.​​Programming​​was​​focused​​on​​motion​​planning,​​inverse​​kinematics,​​motor​​controls​

​and​ ​embedded​ ​systems​ ​programming​ ​including​ ​encoder​ ​feedback,​ ​and​ ​instruction​ ​streaming​

​from​ ​the​ ​PC​ ​to​ ​microcontroller.​ ​While​ ​each​ ​team​ ​had​ ​their​ ​own​ ​work​ ​to​ ​be​ ​done,​ ​there​ ​was​

​obviously​ ​significant​ ​overlap​ ​between​ ​teams​ ​for​ ​many​ ​tasks.​ ​More​ ​concretely,​​mechanical​​and​

​electrical​ ​collaborated​ ​on​ ​wiring​ ​and​ ​plug​ ​placement,​ ​and​ ​programming​ ​and​ ​electrical​

​collaborated heavily on all motor control algorithms and embedded system programming.​

​The​ ​project’s​ ​administrative​ ​structure​ ​had​​two​​leads,​​Andrew​​Park​​and​​Christopher​​Egly,​​along​

​with​ ​three​​subteam​​leads:​​Nicole​​Canfield​​(Mechanical),​​Neil​​Maushard​​(Electrical),​​and​​David​

​Savenok​​(Programming).​​Due​​to​​being​​a​​part​​of​​ASME,​​this​​project​​met​​officially​​twice​​a​​week​

​for​ ​two​ ​hours​ ​each.​ ​However,​ ​near​ ​the​ ​end​​of​​March,​​we​​began​​to​​host​​additional​​meetings​​on​

​the​ ​weekends​ ​for​ ​extra​ ​work​ ​time.​ ​In​ ​total,​ ​approximately​ ​40​ ​students​ ​worked​ ​on​ ​the​ ​robot​​in​

​total,​​with​​an​​average​​attendance​​of​​about​​15​​students​​each​​meeting.​​There​​was​​a​​core​​group​​of​

​about 20-25 students that completed the majority of the work, primarily on the mechanical team.​

​The​ ​end​ ​result,​ ​due​ ​to​ ​errors​ ​that​ ​will​ ​be​ ​described​ ​in​ ​the​ ​mechanical​ ​section,​ ​was​ ​a​ ​smaller​

​5-axis​ ​robotic​ ​arm​ ​that​ ​was​ ​presented​ ​at​ ​EOH.​ ​The​ ​entire​ ​project​ ​spanned​ ​approximately​ ​7​

​months​ ​and​ ​was​ ​done​ ​entirely​ ​from​ ​scratch.​ ​No​ ​open​ ​source​ ​software,​​code,​​controls,​​or​​CAD​

​were​ ​used,​ ​and​ ​all​ ​designs​​and​​algorithms​​were​​created​​organically​​from​​members​​of​​the​​team.​

​This​​document​​is​​meant​​to​​be​​a​​relatively​​informal​​summary​​of​​the​​project​​as​​a​​whole​​including​

​design decisions and their backings, problems, solutions, and other notable events.​



​Mechanical​
​This​ ​section​ ​will​ ​review​ ​all​ ​mechanical​ ​design​ ​aspects​ ​of​ ​the​ ​robot.​ ​This​ ​includes​ ​all​ ​CAD,​

​general​ ​structure,​ ​motors​ ​and​ ​torque​ ​calculations​ ​and​ ​design,​ ​electrical​ ​mounts,​ ​and​ ​physical​

​wiring.​

​Motors​

​Figure 1. Rough CAD with motors and axes​

​The​ ​goal​ ​of​ ​this​ ​project​ ​was​ ​to​ ​build​ ​a​​6-axis​​robotic​​arm​​that​​was​​2​​feet​​long.​​All​​joints​​were​

​chosen​​to​​be​​rotational​​as​​opposed​​to​​prismatic,​​meaning​​we​​needed​​six​​motors.​​Due​​to​​the​​tight​

​budget,​ ​a​ ​collection​ ​of​ ​approximately​ ​15​ ​motors​ ​were​ ​found​ ​with​ ​different​ ​torque-to-weight​

​ratios.​ ​They​ ​were​ ​then​ ​run​ ​through​ ​a​ ​custom​​python​​script​​that​​found​​the​​best​​combinations​​of​

​motors​ ​and​ ​link​ ​lengths​ ​by​ ​iterating​ ​through​ ​all​ ​likely​ ​combinations​ ​of​ ​motors​​and​​arm​​length​

​combinations and calculating the remaining payload at full extension.​

​However,​​since​​the​​motors​​were​​not​​all​​purchased​​immediately,​​many​​choices​​went​​out​​of​​stock.​

​This​ ​led​ ​to​ ​quick​ ​compromises​ ​being​ ​made​ ​without​ ​re-calculating​ ​the​ ​torque​ ​and​ ​weight​

​specifications.​ ​In​ ​the​ ​end,​ ​4​ ​Nema​ ​17​ ​stepper​ ​motors​ ​were​ ​used​ ​(motors​ ​1-4),​ ​3​ ​with​ ​20:1​



​gearboxes,​ ​and​ ​one​ ​with​ ​a​ ​50:1​ ​gearbox,​ ​with​​the​​50:1​​gearbox​​being​​placed​​at​​motor​​2.​​2​​DC​

​motors​​were​​used​​(motors​​5​​&​​6),​​one​​being​​approximately​​0.5lbs,​​and​​the​​other​​about​​2​​ounces,​

​respectively.​​Finally,​​for​​the​​end-effector,​​a​​9g​​servo​​motor​​was​​used​​to​​actuate​​a​​custom​​padded​

​gripper to grab jenga blocks.​

​Ultimately,​ ​the​ ​lack​ ​of​ ​accuracy​ ​in​ ​the​ ​torque​ ​calculations,​ ​along​ ​with​ ​the​ ​nature​ ​of​​the​​motor​

​drivers,​​which​​will​​be​​explained​​in​​the​​electrical​​section,​​caused​​motors​​3​​and​​4​​to​​fail​​upon​​final​

​assembly.​ ​The​ ​result​ ​was​ ​the​ ​removal​ ​of​​motor​​3​​and​​the​​arm​​length​​from​​motor​​2​​to​​3,​​which​

​reduced the weight and torque requirements enough for the entire arm to function properly.​

​Torque Transmission​

​The​​motors​​of​​the​​robot​​were​​primarily​​connected​​by​​basic​​8020​​aluminum​​extrusions,​​except​​for​

​the​​final​​motors,​​which​​were​​simply​​connected​​from​​3D​​printed​​PLA.​​The​​issue​​of​​proper​​torque​

​transmission​ ​was​ ​solved​ ​by​ ​creating​ ​three​ ​main​ ​parts​ ​for​ ​each​ ​motor​ ​connection.​ ​First​ ​was​

​obviously​ ​the​ ​8020​ ​connection​ ​itself,​ ​which​ ​took​ ​up​ ​the​ ​vast​ ​majority​ ​of​ ​the​ ​length​ ​between​

​joints.​ ​Secondly,​ ​each​ ​motor​​sat​​in​​its​​own​​mount,​​which​​had​​connections​​to​​the​​8020​​from​​the​

​previous​​motor.​​Finally,​​each​​motor​​had​​a​​shaft​​connected​​to​​a​​flange,​​which​​then​​screwed​​into​​a​

​torque​ ​plate.​ ​The​ ​flange​ ​was​ ​screwed​ ​directly​ ​onto​ ​the​ ​motor​ ​shaft​ ​and​ ​was​ ​supported​ ​by​ ​a​

​bearing​ ​which​ ​was​​connected​​to​​the​​motor​​mount.​​This​​allowed​​for​​better​​support​​of​​the​​flange​

​and​​motor​​shaft,​​allowing​​the​​force​​to​​be​​distributed​​through​​the​​plastic​​mount​​and​​along​​the​​arm​

​instead of solely by the motor shaft.​

​Figure 2. Flange connection with bearing and motor mount​



​Base Design​

​The​​base​​was​​essential​​for​​the​​functionality​​of​​the​​robot.​​Without​​a​​good​​way​​to​​support​​the​​arm,​

​it​​would​​tip​​over​​and​​collapse​​on​​itself.​​In​​the​​end,​​we​​decided​​to​​mount​​the​​robot​​on​​a​​base​​made​

​of​​PLA,​​then​​bolt​​the​​PLA​​base​​down​​to​​a​​large​​sheet​​of​​plywood​​to​​keep​​the​​robot​​steady.​​Motor​

​2​​was​​then​​mounted​​on​​a​​structure​​made​​of​​8020​​aluminum,​​which​​was​​then​​placed​​on​​top​​of​​this​

​PLA​​base​​and​​connected​​to​​motor​​1​​via​​a​​large​​torque​​plate.​​Some​​key​​features​​of​​this​​PLA​​base​

​were​​the​​bolt​​holes​​for​​stability,​​encoder​​mount​​for​​motor​​1​​position​​tracking,​​an​​access​​hole​​for​

​power​ ​and​ ​USB​ ​cables,​ ​and​ ​a​ ​snap-fit​ ​thrust​ ​bearing,​ ​which​ ​was​ ​the​ ​only​ ​point​ ​of​ ​contact​

​between the base and the 8020 structure above apart from the motor 1 torque plate.​

​Figure 3. PLA base with encoder mount, cable access, and thrust bearing​

​After​​some​​basic​​wire​​counts​​were​​done,​​it​​was​​determined​​that​​there​​would​​be​​less​​wire​​required​

​if​ ​all​ ​the​ ​motor​ ​drivers​ ​were​​kept​​at​​the​​base​​of​​the​​robot,​​so​​all​​drivers​​as​​well​​as​​the​​Arduino​

​were​​mounted​​between​​motors​​1​​and​​2,​​with​​most​​mounted​​directly​​on​​the​​motor​​1​​torque​​plate,​

​as shown below.​



​Figure 4. Motor 1 torque plate with electrical components mounted​

​After​ ​this​ ​section,​ ​however,​ ​the​ ​structure​ ​of​ ​the​ ​robot​ ​was​ ​mechanically​ ​very​ ​similar,​​with​​the​

​classic​​torque​​plate/8020/motor​​mount​​combo​​on​​every​​joint.​​Minor​​changes​​were​​made​​at​​every​

​iteration, and these are shown in the figures below.​

​Figure 5. Full assembly 1​



​Figure 6. Full assembly 2​

​Figure 7. Full assembly 3​

​Figure 8. Full assembly 4​



​Encoder Mounts​

​To​ ​properly​ ​control​ ​the​ ​position​ ​of​ ​the​ ​motors,​ ​it​ ​was​ ​decided​ ​to​​implement​​magnetic​​encoder​

​feedback​​on​​each​​of​​the​​motors.​​The​​controls​​and​​wiring​​will​​be​​discussed​​in​​later​​sections,​​but​

​all​​of​​these​​needed​​to​​be​​mounted​​to​​properly​​read​​the​​position​​of​​the​​motors​​at​​all​​times.​​For​​the​

​steppers,​ ​this​ ​process​ ​was​​relatively​​straightforward.​​Each​​of​​the​​motors​​had​​a​​shaft​​exposed​​at​

​the​ ​back​ ​of​ ​the​ ​motor,​ ​so​ ​the​​magnets​​for​​the​​encoders​​were​​simply​​superglued​​to​​these​​shafts.​

​The​ ​motor​ ​mounts​ ​then​ ​included​​a​​set​​of​​plates​​for​​the​​encoders​​to​​be​​mounted​​on​​in​​the​​back,​

​each​ ​of​ ​which​ ​featured​ ​a​ ​halo​ ​to​ ​protect​ ​the​​electrical​​pins​​from​​damage.​​As​​seen​​below,​​there​

​were​​6​​total​​mounting​​holes​​for​​screws.​​The​​four​​in​​the​​center​​actually​​screwed​​directly​​into​​the​

​stepper​​motor​​making​​it​​a​​compact​​piece​​with​​the​​encoder​​and​​encoder​​mounts.​​The​​two​​on​​the​

​outside then fixed the motor-encoder block into the mount.​

​Figure 9. Stepper encoder mount​

​Unfortunately,​​the​​mounting​​for​​the​​DC​​motors​​was​​significantly​​more​​difficult.​​One​​of​​the​​DC​

​motors​ ​did​ ​have​ ​a​ ​shaft​ ​in​ ​the​ ​back,​ ​but​ ​it​ ​was​ ​far​ ​too​ ​small​ ​to​ ​place​ ​a​ ​magnet​ ​on.​ ​When​ ​we​

​attempted​ ​to​ ​cut​ ​the​ ​casing​ ​of​ ​the​ ​motor​ ​to​ ​further​ ​expose​ ​the​ ​shaft,​ ​the​ ​motor​ ​stopped​

​functioning​ ​and​ ​we​ ​were​ ​forced​ ​to​ ​order​ ​a​ ​spare.​ ​After​ ​consulting​ ​a​ ​robotics​ ​professor​ ​at​ ​the​

​university,​​we​​designed​​a​​geared​​system​​to​​run​​in​​tandem​​with​​the​​output​​shaft​​of​​the​​DC​​motors.​

​This​​geared​​shaft​​then​​had​​the​​magnet​​glued​​on​​and​​was​​connected​​to​​the​​encoder​​system,​​shown​

​below.​



​Figure 10. Motor 5 mount with geared encoder system (second shaft not pictured)​

​While​ ​this​ ​creative​ ​approach​ ​certainly​ ​functioned,​ ​due​ ​to​ ​our​ ​limited​ ​manufacturing​ ​resources​

​and​ ​time,​ ​even​ ​the​ ​small​​backlash​​that​​was​​left​​in​​the​​geared​​system​​led​​to​​difficulties​​with​​the​

​controls.​ ​If​ ​this​ ​part​​of​​the​​project​​were​​to​​be​​redone,​​great​​care​​would​​be​​taken​​to​​have​​tighter​

​tolerances and to minimize the extra space used by this setup.​

​Wiring​

​The​ ​final​ ​mechanical​ ​consideration​ ​was​ ​the​ ​wiring,​ ​which​ ​turned​ ​out​ ​to​ ​be​ ​one​ ​of​ ​the​ ​most​

​tedious​​parts​​of​​the​​entire​​project.​​While​​it​​was​​not​​difficult​​to​​come​​up​​with​​strain​​relief​​tactics,​

​physically​ ​cutting​ ​and​ ​soldering​ ​the​ ​various​ ​wires​ ​took​ ​significantly​ ​more​ ​time​ ​than​​expected.​

​Due​​to​​the​​rotating​​parts​​of​​the​​robot,​​we​​originally​​considered​​slip​​rings​​to​​allow​​the​​joints​​to​​be​

​able​ ​to​ ​spin​ ​infinitely.​ ​However,​ ​these​ ​are​ ​extremely​ ​expensive​ ​and​ ​the​ ​amount​ ​of​ ​wires​ ​we​

​needed​ ​to​ ​run​ ​along​ ​the​ ​arm​ ​was​ ​far​ ​too​ ​great.​ ​Instead,​​we​​set​​boundaries​​within​​the​​code​​and​

​measured​ ​out​ ​a​ ​specific​ ​amount​ ​of​ ​slack​ ​for​ ​the​ ​wires​ ​at​ ​each​ ​joint​ ​before​ ​implementing​ ​the​

​strain relief via small tabs on the motor mounts and torque plates, as shown below.​



​Figure 11. Wiring with strain relief​

​End-effectors​
​The​ ​final​ ​portion​ ​of​ ​the​ ​mechanical​ ​design​ ​was​ ​the​ ​various​ ​end-effectors​ ​for​ ​the​ ​different​

​applications.​​While​​they​​were​​not​​actually​​put​​to​​use​​on​​the​​robot,​​they​​were​​constructed​​and​​all​

​functioned​ ​independently.​ ​These​ ​included​ ​a​ ​servo-actuated​ ​claw,​ ​a​ ​rake,​ ​and​ ​a​ ​small​​LED​​box​

​(which​ ​was​ ​actually​ ​used).​ ​The​ ​claw​ ​mechanism​ ​was​ ​a​ ​basic​ ​linear​ ​actuator​ ​using​ ​a​ ​small​

​linkage-based​ ​system,​ ​as​ ​shown​ ​below.​ ​It​ ​was​ ​then​ ​programmed​ ​to​ ​grab​ ​jenga​ ​blocks​ ​and​

​padding​ ​was​ ​placed​ ​on​ ​the​ ​grippers​ ​to​ ​keep​ ​the​ ​block​ ​in​ ​place​ ​even​ ​when​ ​lifted​​up.​​The​​LED​

​rake​​was​​simply​​for​​dragging​​through​​sand,​​and​​the​​LED​​box​​featured​​a​​small​​bit​​of​​perf​​board​

​with​ ​some​ ​resistors​ ​to​ ​control​ ​an​ ​RGB​ ​LED,​​which​​was​​used​​to​​light​​paint​​on​​the​​5-axis​​robot​

​end product.​

​Figure 12. Jenga block gripper​



​Electrical​
​This​​section​​will​​review​​all​​electrical​​aspects​​of​​the​​project​​including​​the​​control​​scheme,​​despite​

​it​ ​being​ ​embedded​ ​systems​ ​programming.​ ​These​ ​aspects​ ​include​ ​the​ ​power​ ​system,​ ​motor​

​drivers,​ ​open​ ​and​ ​closed​ ​loop​ ​controls,​ ​microcontroller​ ​feedback​ ​processing​ ​and​ ​decision​

​making, and timers and PWM generation.​

​Power System​

​All​ ​electrical​ ​systems​ ​need​ ​power,​ ​especially​ ​high-torque​ ​stepper​ ​motors.​ ​Luckily,​ ​we​ ​were​

​provided​​with​​a​​12V​​power​​supply​​from​​one​​of​​ASME’s​​previous​​projects,​​leaving​​us​​with​​some​

​extra​ ​money​ ​on​ ​the​ ​budget.​ ​This​ ​power​ ​supply​ ​was​ ​more​ ​than​ ​capable​ ​of​ ​running​ ​all​ ​of​ ​the​

​motors,​ ​so​​it​​was​​run​​straight​​to​​each​​of​​our​​5​​drivers,​​and​​while​​we​​could​​have​​implemented​​a​

​5V​​regulator​​for​​the​​low-voltage​​system,​​the​​Arduino​​was​​already​​receiving​​power​​from​​the​​PC,​

​so​ ​the​ ​low​ ​voltage​​system​​was​​simply​​run​​off​​of​​that​​board.​​This​​included​​the​​encoders,​​LEDs,​

​and​​even​​the​​servo​​motor​​on​​the​​end-effector.​​A​​full​​schematic​​can​​be​​seen​​below,​​including​​the​

​Arduino, 7 motors, 6 encoders, 5 drivers, and capacitors for voltage stabilization.​

​Figure 13. Full electrical schematic​



​Motor Drivers​

​For​ ​the​ ​two​ ​different​ ​types​ ​of​ ​motors,​ ​we​​had​​2​​types​​of​​drivers.​​The​​Nema​​17​​stepper​​motors​

​were​​run​​off​​of​​A4988​​stepper​​drivers​​and​​the​​DC​​motors​​were​​both​​run​​off​​of​​the​​same​​L298N​

​DC motor driver, which was capable of controlling up to 2 DC motors simultaneously.​

​The​​A4988​​drivers​​function​​by​​receiving​​a​​small​​electrical​​pulse​​(+5V)​​corresponding​​to​​one​​step​

​on​ ​the​ ​stepper​ ​motor​ ​(1.2°​ ​before​ ​gearbox).​ ​The​ ​shortest​ ​pulse​ ​it​ ​would​ ​register​ ​was​

​approximately​ ​500μs,​ ​also​ ​found​ ​through​ ​experimentation.​ ​Based​ ​on​ ​this,​​we​​realized​​that​​you​

​can​ ​set​​varying​​stepper​​motor​​speeds​​by​​changing​​the​​frequency​​of​​a​​PWM​​signal​​provided​​the​

​high​ ​pulse​ ​is​ ​consistently​ ​500μs,​ ​which​ ​played​ ​heavily​​into​​our​​control​​scheme.​​To​​reverse​​the​

​direction of the motor, the driver simply had an additional direction pin.​

​The​​L298N​​drivers,​​however,​​functioned​​entirely​​differently​​and​​ran​​on​​a​​scaled​​voltage​​between​

​0-5V.​​Fortunately​​for​​us,​​this​​could​​very​​easily​​be​​run​​from​​the​​pre-set​​PWM​​pins​​of​​the​​Arduino.​

​The​​L298N​​drivers​​also​​accepted​​reversed​​voltage​​to​​reverse​​the​​direction​​of​​the​​motor.​​The​​final​

​feature​ ​of​ ​the​ ​L298N​ ​driver​ ​was​ ​that​ ​if​ ​both​ ​inputs​ ​were​ ​set​ ​to​ ​+5V,​ ​this​ ​would​ ​lock​ ​the​ ​DC​

​motor in place.​

​To​​recap,​​both​​motors​​were​​run​​off​​of​​PWM​​signals,​​but​​the​​DC​​motors​​were​​controlled​​via​​the​

​duty​ ​cycle​ ​while​ ​the​ ​stepper​ ​motors​​were​​controlled​​by​​the​​frequency.​​While​​the​​L298N​​driver​

​had​ ​no​ ​issues​ ​and​ ​was​ ​very​ ​easy​​to​​use,​​the​​A4988​​drivers​​were​​very​​small​​and​​not​​capable​​of​

​running​ ​very​ ​high​ ​current.​ ​This​ ​was​ ​determined​ ​experimentally​ ​and​ ​it​ ​was​ ​found​ ​that​ ​the​

​maximum​ ​current​ ​that​ ​they​ ​could​ ​pass​ ​reliably​ ​over​ ​repeated​ ​exposure​​was​​about​​1.2A,​​which​

​was​​below​​the​​maximum​​rated​​current​​for​​the​​stepper​​motors.​​This​​meant​​that​​there​​was​​no​​way​

​to​ ​attain​ ​the​ ​maximum​ ​rated​ ​torque​ ​on​ ​the​ ​stepper​ ​motors​ ​without​ ​completely​ ​burning​​out​​the​

​drivers, which was another reason the motors failed upon final assembly.​

​Encoders​

​Multiple​ ​of​ ​the​ ​most​ ​frustrating​ ​problems​ ​in​ ​the​ ​entire​ ​project​ ​came​ ​from​ ​the​​encoders.​​These​

​AS5600​ ​magnetic​ ​encoders​ ​had​ ​to​ ​be​ ​placed​ ​between​ ​1-3mm​ ​away​ ​from​ ​their​ ​corresponding​

​magnet,​ ​and​ ​wires​ ​with​ ​high​ ​enough​​currents​​looping​​or​​passing​​closely​​to​​the​​encoders​​would​

​induce​ ​a​ ​magnetic​ ​field​ ​and​ ​cause​ ​noticeable​ ​errors,​ ​which​ ​often​ ​kept​ ​the​ ​DC​ ​motors​ ​from​



​converging​ ​on​ ​a​ ​final​ ​position​ ​during​ ​testing.​ ​To​ ​make​ ​matters​ ​worse,​ ​the​ ​encoders​ ​relayed​

​feedback​ ​via​ ​analog​ ​signal​ ​(0-3.3V)​ ​which​ ​was​ ​very​ ​difficult​ ​to​ ​accurately​ ​measure​ ​on​ ​the​

​Arduino’s ADC, as it fluctuated by a significant amount while the motor stayed completely still.​

​The​ ​largest​ ​problem​ ​came​ ​while​ ​we​ ​were​ ​first​ ​testing​ ​the​​encoders​​and​​running​​them​​from​​the​

​Arduino’s​ ​built-in​ ​3.3V​ ​power​ ​supply.​ ​They​ ​seemed​ ​to​ ​be​ ​returning​ ​values​ ​nowhere​ ​near​

​expected,​ ​increasing​ ​generally​ ​when​ ​expected​ ​to​ ​increase,​ ​but​ ​shooting​ ​back​ ​down​ ​at​ ​degree​

​values​ ​that​ ​did​ ​not​ ​correspond​ ​with​​full​​rotations​​(i.e.​​the​​encoder​​would​​loop​​back​​to​​0V​​after​

​410°).​ ​What​ ​we​​ended​​up​​discovering​​was​​that​​the​​Arduino​​itself​​was​​outputting​​a​​4.2V​​source​

​from​ ​the​ ​3.3V​ ​terminal,​ ​causing​ ​the​ ​encoders​ ​to​ ​return​ ​values​ ​between​ ​0-4.2V​ ​instead​ ​of​ ​our​

​expected​ ​0-3.3V​ ​values.​ ​From​ ​that​ ​point​ ​forth,​​we​​always​​checked​​the​​source​​voltage​​from​​the​

​Arduinos and it tended to stay at 3.3V about 75% of the time.​

​The​ ​second​ ​problem​ ​came​ ​with​ ​the​ ​introduction​ ​of​ ​gearboxes.​ ​Since​ ​the​ ​encoders​ ​were​ ​all​

​mounted​ ​to​ ​the​ ​backs​ ​of​ ​the​ ​stepper​ ​motors​ ​(all​ ​of​ ​which​ ​had​ ​gearboxes),​ ​it​ ​was​ ​necessary​ ​to​

​track​ ​the​ ​number​ ​of​ ​rotations​ ​of​ ​the​ ​encoder​ ​to​ ​determine​ ​the​ ​absolute​ ​position​ ​of​ ​the​ ​output​

​shaft.​ ​However,​ ​we​​began​​having​​problems​​due​​to​​fluctuations​​around​​the​​0°​​mark,​​causing​​the​

​absolute​​position​​to​​be​​frequently​​off​​by​​about​​18°​​for​​the​​20:1​​gearboxes,​​corresponding​​to​​one​

​full​​rotation​​of​​the​​base​​motor.​​This​​was​​solved​​by​​implementing​​a​​sort​​of​​“guessing”​​system​​by​

​which​ ​the​ ​controls​ ​calculated​ ​the​ ​theoretical​ ​position​ ​of​ ​the​ ​motors​ ​before​ ​movement​ ​and​

​proceeded​ ​to​ ​compare​ ​the​ ​value​ ​read​ ​by​ ​the​ ​encoder​ ​to​ ​the​ ​theoretical​ ​position.​ ​If​ ​they​ ​were​

​within​​1°​​of​​each​​other,​​the​​controls​​would​​consider​​the​​movement​​“complete”​​even​​if​​that​​range​

​passed​​over​​the​​360°​​mark.​​This​​allowed​​us​​to​​simply​​use​​the​​encoders​​as​​a​​sanity​​check​​instead​

​of a more rigid open-loop control method for the stepper motors.​

​Surprisingly,​​this​​issue​​with​​counting​​rotations​​was​​also​​pervasive​​for​​the​​DC​​motors.​​Despite​​the​

​fact​ ​that​ ​the​ ​encoders​​were​​connected​​directly​​to​​the​​output​​shafts,​​the​​total​​rotations​​needed​​to​

​be​ ​counted​ ​to​ ​set​ ​limits​ ​of​ ​about​ ​2​ ​rotations​ ​to​ ​prevent​ ​wire​ ​twisting.​ ​However,​ ​it​ ​was​ ​not​ ​an​

​issue​ ​in​ ​the​ ​same​ ​way​​it​​was​​for​​the​​steppers​​because​​the​​DC​​motors​​were​​constantly​​checking​

​and​​updating​​the​​values​​of​​the​​encoders,​​so​​by​​comparing​​the​​current​​value​​to​​the​​last​​value,​​we​

​were able to track the rotations relatively simply.​



​Motor Controls​

​The​​goal​​for​​the​​control​​flow​​was​​that​​all​​of​​the​​motors​​run​​simultaneously​​with​​all​​of​​the​​stepper​

​motors​ ​finishing​ ​at​ ​the​ ​same​ ​time.​ ​However,​ ​with​ ​a​ ​mix​ ​of​ ​motors,​ ​simultaneous​ ​controls​ ​are​

​exceedingly​​difficult​​to​​create​​without​​causing​​significant​​lags​​for​​the​​PID​​controls.​​To​​solve​​this​

​issue,​ ​we​ ​discovered​ ​that​ ​we​ ​could​ ​use​ ​the​ ​built-in​ ​timer​ ​peripherals​ ​on​ ​the​ ​Arduino​ ​and​

​manually​​generate​​a​​PWM​​signal​​of​​varying​​frequency​​using​​timer​​interrupts​​and​​Clear​​Timer​​on​

​Compare Match (CTC) mode.​

​For​​the​​stepper​​motors,​​calculating​​the​​speed​​was​​relatively​​simple.​​Given​​the​​current​​angle​​and​

​target​ ​angle,​ ​the​ ​number​ ​of​ ​steps​ ​were​ ​calculated​ ​for​ ​each​ ​motor​ ​with​ ​gearboxes​ ​taken​ ​into​

​account.​ ​This​ ​speed​ ​was​ ​then​ ​turned​ ​into​ ​a​ ​frequency​ ​denoting​ ​the​ ​steps​ ​per​ ​second​ ​for​ ​each​

​motor.​ ​Then,​ ​this​​frequency​​was​​used​​to​​calculate​​an​​“Output​​Compare​​Register”​​(OCR)​​value.​

​The​ ​16-bit​ ​timers​ ​would​ ​all​ ​be​​counting​​at​​a​​predetermined​​frequency​​(16MHz)​​up​​to​​2​​16​ ​-​​1​​=​

​65535,​ ​and​ ​whenever​ ​they​ ​hit​ ​the​ ​OCR​ ​value,​ ​they​ ​would​ ​trigger​ ​an​ ​interrupt,​ ​which​ ​we​

​configured​ ​to​ ​set​ ​a​ ​digital​ ​pin​ ​high,​ ​and​ ​reset​ ​the​ ​timer​ ​back​ ​to​ ​0.​ ​We​ ​then​ ​set​​a​​second​​OCR​

​value​​(let’s​​call​​them​​OCRA​​and​​OCRB)​​to​​trigger​​an​​interrupt​​after​​500μs​​which​​would​​set​​the​

​pin​​to​​low.​​This​​OCRB​​value​​does​​not​​reset​​the​​timer,​​so​​the​​OCRA​​value​​does​​not​​have​​to​​take​

​this​ ​second​ ​interrupt​ ​into​ ​account.​ ​We​ ​knew​ ​that​ ​the​ ​maximum​ ​frequency​ ​the​ ​stepper​ ​motors​

​could​​run​​at​​was​​500Hz​​through​​experimentation,​​so​​we​​always​​set​​the​​motor​​with​​the​​most​​steps​

​to​​run​​at​​500Hz,​​determine​​our​​total​​timescale,​​and​​calculate​​the​​other​​frequencies​​based​​on​​the​

​global​​timescale.​​We​​then​​would​​set​​4​​different​​OCRA​​values​​on​​the​​4​​timer​​peripherals​​for​​the​​4​

​stepper​ ​motors​ ​based​ ​on​ ​their​ ​desired​ ​frequency,​ ​and​ ​set​ ​the​ ​same​ ​OCRB​ ​values​ ​for​ ​a​ ​500μs​

​on-time.​ ​This​ ​entire​ ​calculation​ ​happened​ ​before​ ​beginning​ ​any​ ​of​ ​the​ ​motors,​ ​and​ ​the​​OCRA​

​interrupts​​simply​​had​​the​​following​​lines:​​if​​the​​step​​count​​is​​below​​the​​desired​​step​​count,​​set​​the​

​driven​ ​pin​ ​to​ ​high​​and​​increment​​the​​step​​count.​​Otherwise,​​set​​a​​motorXRunning​​flag​​to​​false.​

​Once​ ​all​ ​motorRunning​ ​flags​ ​were​ ​false,​ ​the​​Arduino​​triggered​​another​​flag​​allowing​​it​​to​​read​

​and​​parse​​further​​instructions.​​Recall​​that​​none​​of​​these​​interrupts​​were​​occurring​​within​​the​​main​

​loop​ ​while​ ​the​​motors​​were​​running.​​This​​“behind​​the​​scenes”​​approach​​allowed​​us​​to​​focus​​on​

​PID​ ​control​ ​of​ ​the​ ​DC​ ​motors​ ​within​ ​the​ ​main​ ​loop,​ ​which​ ​consistently​ ​called​ ​the​ ​function​​to​

​update the DC motors.​



​This​ ​DC​ ​motor​ ​control​ ​was​ ​a​ ​basic​ ​open-loop​ ​proportional​ ​control​ ​algorithm​ ​based​ ​on​ ​the​

​feedback​​from​​the​​magnetic​​encoders.​​Since​​the​​stepper​​motors​​did​​not​​require​​active​​monitoring​

​or​​CPU​​power,​​the​​DC​​algorithm​​was​​able​​to​​take​​full​​advantage​​of​​the​​computational​​power​​of​

​the​ ​Arduino​ ​while​​the​​motors​​were​​running.​​This​​was​​important​​because​​the​​function​​to​​update​

​the​​DC​​motors,​​while​​not​​mathematically​​complex,​​had​​to​​constantly​​compare​​the​​current​​angle​

​against​ ​the​ ​desired​ ​angle​ ​and​ ​determine​ ​the​ ​shortest​ ​path​ ​without​ ​going​ ​over​ ​the​ ​bounds​ ​of​

​motion​ ​on​ ​every​ ​single​ ​call.​ ​It​ ​also​ ​had​ ​to​ ​make​ ​sure​ ​to​ ​properly​ ​increment/decrement​ ​the​

​rotations​ ​counter​ ​if​ ​the​ ​current​ ​encoder​ ​reading​ ​was​ ​on​ ​the​ ​other​ ​side​ ​of​ ​0°​ ​compared​ ​to​ ​the​

​previous​​value,​​and​​use​​this​​information​​to​​determine​​the​​shortest​​path.​​The​​function​​also​​had​​to​

​check​​whether​​the​​motors​​were​​within​​the​​acceptable​​range,​​and​​stop​​them​​if​​they​​were.​​Due​​to​

​the​ ​backlash​ ​from​ ​the​ ​encoders​ ​and​ ​gear​ ​system,​ ​as​ ​well​ ​as​ ​friction​ ​from​ ​the​ ​gearboxes,​ ​the​

​motors​​were​​only​​accurate​​to​​within​​about​​8°​​total.​​In​​a​​professional​​setting,​​this​​would​​be​​utterly​

​unacceptable,​ ​but​ ​since​ ​all​ ​error​ ​was​ ​due​ ​to​ ​a​ ​low​ ​cost​ ​of​ ​development,​ ​we​ ​considered​ ​this​ ​a​

​relative​ ​success.​ ​Some​ ​improvements​ ​include​ ​implementing​ ​differentiation​​and​​integration​​into​

​the control sequence as well as improving the backlash on the gears.​

​Overall,​ ​the​ ​control​ ​sequence​ ​was​ ​exceedingly​ ​complex​ ​and​ ​required​ ​months​ ​of​ ​development,​

​constant​ ​testing,​ ​many​ ​lost​ ​hairs,​ ​and​ ​many​ ​sleepless​ ​nights.​ ​Implementing​ ​timer​ ​controls​ ​and​

​directly​ ​manipulating​ ​register​ ​values​ ​for​ ​different​ ​modes​ ​was​ ​a​ ​new​ ​experience​ ​for​ ​everybody​

​involved​ ​and​ ​definitely​ ​developed​ ​our​ ​skills​ ​and​ ​experience​ ​with​ ​embedded​ ​systems​

​programming.​

​Figure 14. Test setup for combined stepper/DC controls​



​Programming​
​This​ ​section​ ​will​ ​go​ ​over​ ​all​ ​non-controls​ ​programming​ ​within​ ​the​ ​project.​ ​This​ ​primarily​

​consists​ ​of​ ​motion​ ​planning,​ ​inverse​ ​kinematics,​ ​and​ ​instruction​ ​set​ ​generation​ ​and​ ​streaming.​

​All​​algorithms​​written​​in​​this​​section​​were​​done​​in​​python​​and​​run​​on​​a​​PC,​​which​​then​​streamed​

​instruction​ ​sets​ ​to​ ​the​ ​Arduino.​ ​It’s​ ​important​ ​to​ ​note​ ​that​ ​the​ ​Arduino​ ​did​ ​not​ ​have​ ​enough​

​dynamic​ ​memory​ ​to​ ​even​ ​store​ ​one​ ​full​ ​instruction​ ​set,​ ​much​ ​less​ ​the​ ​code​ ​for​ ​the​ ​motion​

​planning​​algorithms.​​For​​this​​reason,​​it​​was​​necessary​​to​​constantly​​stream​​the​​instructions​​to​​the​

​Arduino instead of sending the data all at once.​

​Motion Planning​

​The​ ​primary​ ​motion​ ​planning​ ​algorithm​ ​we​ ​ran​ ​was​ ​based​​on​​the​​application​​of​​light​​painting.​

​This​ ​is​ ​when​ ​you​ ​take​ ​a​ ​long-exposure​ ​photo​ ​and​ ​“paint”​ ​a​​picture​​with​​an​​LED.​​The​​concept​

​was​ ​to​ ​upload​ ​an​​image,​​process​​it,​​and​​“paint”​​it​​using​​the​​robot.​​The​​first​​step​​in​​this​​process​

​was​​processing​​the​​image​​and​​turning​​it​​into​​a​​set​​of​​spatial​​coordinates​​for​​the​​robot​​to​​travel​​to.​

​This is what is encompassed in the motion planning section.​

​First,​ ​the​ ​image​ ​was​ ​run​ ​through​ ​a​ ​Canny​ ​edge-detection​ ​algorithm​ ​to​ ​identify​ ​the​ ​primary​

​contours.​ ​These​ ​contours​ ​were​ ​then​ ​run​ ​through​ ​a​ ​Douglas-Peuker​​approximation​​algorithm​​to​

​remove​​redundancies​​and​​reduce​​the​​number​​of​​points,​​which​​led​​to​​a​​significant​​reduction​​in​​the​

​amount​ ​of​ ​time​ ​it​​took​​to​​recreate​​an​​image.​​Finally,​​all​​contours​​less​​than​​100​​square​​pixels​​in​

​area​ ​were​ ​removed​ ​to​ ​reduce​ ​time​ ​even​ ​further.​ ​To​ ​determine​ ​the​ ​color​ ​of​ ​the​ ​LED​ ​for​ ​each​

​contour,​​the​​image​​was​​blurred​​and​​inpainted​​along​​each​​contour,​​and​​a​​selection​​of​​RGB​​values​

​was​ ​taken​ ​and​ ​averaged.​ ​Each​ ​contour​ ​was​ ​then​ ​assigned​ ​an​ ​RGB​ ​value​ ​along​ ​with​​the​​set​​of​

​points in image coordinates.​

​The​​contours​​in​​image​​coordinates​​were​​then​​projected​​onto​​the​​3D​​spatial​​plane​​with​​the​​origin​

​at​ ​the​ ​base​ ​of​ ​the​​robot.​​It​​was​​ensured​​that​​the​​image​​bounds​​were​​projected​​onto​​a​​portion​​of​

​the​​plane​​that​​was​​fully​​accessible​​to​​the​​robot.​​An​​example​​of​​the​​entire​​process​​is​​shown​​below.​

​This set of coordinates marked the end of the motion planning portion of the python algorithm.​



​Figure 15. Original image (left), contour generation overlaid onto original image(middle), and​
​projection into 3D space (right)​

​Inverse Kinematics​

​For​ ​the​ ​image​ ​algorithm​ ​specifically,​ ​the​ ​inverse​ ​kinematics​ ​were​ ​done​ ​by​ ​hand​ ​using​ ​simple​

​trigonometry.​​Each​​of​​the​​points​​were​​run​​through​​a​​simple​​trigonometric​​algorithm​​that​​returned​

​the​ ​angles​ ​of​ ​the​ ​motors​ ​that​ ​were​ ​required​ ​to​ ​place​ ​the​ ​end-effector​ ​at​ ​that​ ​point​ ​in​ ​space.​

​However,​ ​for​ ​other​​algorithms​​that​​were​​not​​used​​in​​the​​final​​product,​​a​​Jacobian-based,​​matrix​

​exponential, Newton-Raphson iterative approach was used to converge on a final solution.​

​The​​original​​pose​​of​​the​​end-effector​​in​​the​​home​​frame​​is​​given​​by​​a​​matrix​​M,​​consisting​​of​​a​

​3x3​ ​rotation​ ​matrix,​ ​3x1​​position​​matrix,​​and​​1x4​​matrix​​to​​finish​​the​​square.​​The​​final​​pose​​of​

​the​​end-effector​​is​​then​​represented​​by​​a​​transformation​​matrix​​T​​in​​the​​same​​form.​​A​​6x6​​matrix​

​consisting​ ​of​ ​the​​screw​​axes​​for​​each​​joint​​is​​also​​given​​as​​an​​input,​​which​​are​​calculated​​using​

​the​ ​axes​ ​of​ ​rotation​ ​as​ ​well​ ​as​ ​the​ ​position​ ​of​ ​the​ ​joint​ ​in​ ​the​ ​home​ ​orientation.​ ​To​ ​begin​ ​the​

​Newton-Raphson​​method,​​an​​initial​​guess​​for​​the​​final​​angles​​is​​also​​input,​​as​​well​​as​​acceptable​

​threshold​ ​values​​that​​signal​​the​​end​​of​​iteration.​​The​​final​​result​​is​​a​​set​​of​​angles​​that​​place​​the​

​end-effector in the desired position and orientation.​



​Instruction Sets​

​This​ ​entire​ ​idea​ ​of​ ​streaming​ ​data​ ​in​ ​packages​ ​occurred​ ​due​ ​to​ ​the​ ​issue​ ​of​ ​memory​ ​on​ ​the​

​Arduino.​ ​The​ ​control​ ​program​ ​took​​up​​about​​60%​​of​​the​​Arduino’s​​dynamic​​memory,​​meaning​

​there​ ​was​ ​no​​way​​that​​it​​could​​possibly​​store​​an​​instruction​​set​​of​​10,000​​characters.​​If​​we​​ever​

​wanted​ ​to​ ​write​ ​an​ ​instruction​ ​set​ ​that​ ​could​ ​allow​ ​the​ ​robot​ ​to​ ​draw​ ​even​ ​a​ ​basic​ ​picture,​​we​

​would​​need​​to​​have​​the​​data​​constantly​​streamed​​to​​the​​Arduino,​​so​​we​​came​​up​​with​​this​​custom​

​streaming method and instruction set language to bypass the memory issue.​

​Before​ ​parsing​ ​the​ ​3D​ ​spatial​ ​coordinates,​ ​the​ ​python​ ​script​ ​checked​ ​to​ ​ensure​ ​that​ ​there​ ​was​

​proper​ ​communication​ ​between​ ​the​ ​Arduino​ ​and​ ​the​ ​PC.​ ​This​ ​involved​ ​a​ ​simple​ ​probe​ ​to​ ​see​

​whether​ ​the​​device​​was​​recognized​​under​​a​​serial​​port.​​If​​it​​was,​​then​​the​​program​​moved​​on​​to​

​the next step.​

​Once​ ​the​ ​3D​ ​spatial​ ​points​ ​were​ ​all​ ​converted​ ​into​ ​sets​ ​of​ ​angles​ ​for​ ​the​ ​motors,​ ​these​ ​were​

​encoded​ ​into​ ​a​ ​custom​ ​“instruction​ ​set”​ ​with​ ​delimiters​ ​denoting​ ​the​ ​beginnings​ ​and​ ​ends​ ​of​

​various​ ​“instructions”​ ​including​ ​commands​ ​like:​ ​begin​ ​calibration,​ ​move,​ ​wait,​ ​change​ ​LED​

​color,​ ​and​ ​end​ ​program.​ ​These​ ​were​ ​all​ ​merged​ ​into​ ​one​ ​large​ ​string,​ ​primarily​ ​consisting​ ​of​

​move commands with LED commands sprinkled throughout.​

​This​ ​massive​ ​string​​was​​then​​broken​​up​​into​​sets​​of​​commands​​no​​longer​​than​​1500​​characters,​

​which​ ​was​ ​then​ ​streamed​​along​​the​​USB​​cable​​to​​the​​Arduino​​serial​​port,​​which​​parsed​​it​​upon​

​next​ ​availability.​ ​Only​ ​once​ ​the​ ​Arduino​ ​returned​ ​a​ ​flag​ ​signaling​ ​that​ ​the​ ​instructions​ ​were​

​completed did the script then parse and send the next chunk of instructions.​


